Donnay, J. D. H., Sudarsanan, K. \& Young, R. A. (1973). Acta Cryst. B29, 814-817.
Dornberger-Schiff, K. (1959). Acta Cryst. 12, 246.
Dornberger-Schiff, K. (1961). Acta Cryst. 14, 1003.
Drugman, J. (1939). Bull. Soc. Fr. Minér. 62, 99-132.
Drugman, J. (1943). Bull. Soc. Fr. Minér. 66, 264-283.
Friedel, G. (1926). Leçons de Cristallographie. Paris: Berger-Levrault. Reprinted (1964). Paris: Blanchard.
Friedel, G. (1933a). C. R. Acad. Sci. Paris, 197, 103105.

Friedel, G. (1933b). Bull. Soc. Fr. Minér. 56, 262-274.
Hartman, P. (1956). Z. Kristallogr. 107, 225-237.
Holser, W. T. (1958). Z. Kristallogr. 110, 249-265.
International Tables for X-ray Crystallography. (1969). Vol. I. p. 530. Birmingham: Kynoch Press.

Marezio, M., Dernier, P. D. \& Santoro, A. (1973). Acta Cryst. A 29, 618-621.

Niggli. P, (1928). Handbuch der Experimentalphysik, Vol. 7, Part 1. Leipzig: Akademische Verlagsgesellschaft.
Niven, I. (1961). Numbers: Rational and Irrational. Random House
Santoro, A. (1970). Crystallographic Computing. Edited by F. R. Ahmed. Copenhagen: Munksgaard.

Santoro, A. \& Mighell, A. D. (1970). Acta Cryst. A26, 124-127.
Santoro, A. \& Mighell, A. D. (1972). Acta Cryst. A 28. 284-287.
Santoro, A. \& Mighell, A. D. (1973). Acta Cryst. A29, 169-175.
Takeda, H., Donnay, J. D. H., Roseboom, E. H. \& Appleman, D. E. (1967). Z. Kristallogr. 125, 404-413.
Takeda, H., Donnay, J. D. H. \& Appleman, D. E. (1967). Z. Kristallogr. 125, 414-422.

Wrinch, D. (1952). Amer. Min. 37, 234-241.

Debye Temperature of NaF and $\mathbf{R b B r}$ by X-ray Diffraction

By P.D. Pathak and J.M.Trivedi
Physics Department, University School of Sciences, Ahmedabad-9, India

(Received 17 July 1973; accepted 8 August 1973)

Debye temperatures of NaF and RbBr have been determined by X -ray diffraction from room temperature up to about $800^{\circ} \mathrm{K}$ using methods due to Paskin [Acta Cryst. (1957). 10, 667-669] and Chipman [J. Appl. Phys. (1960). 31, 2012-2015]. The anharmonic contribution to the Debye Θ is shown to come essentially from thermal expansion. The plot of the reduced thermal expansion $\alpha / \alpha_{m / 2}$ versus $T / A a^{2} \Theta^{2}$ gives a common curve. Here $\alpha_{m / 2}$ is the value of α at $T=\frac{1}{2} T_{m}, T_{m}$ being the melting point, A is the mean atomic weight and a the lattice constant. The energy of vacancy formation is computed using an equation established by Pathak \& Trivedi [Proc. Nucl. Phys. Solid State Phys. Symp. Roorkee, India, (1969). pp. 50-53].

Introduction

On searching the literature it is found that no systematic investigation of the temperature variation of the Debye temperature Θ_{M} of NaF and RbBr has been undertaken. Still however, room-temperature values of Θ_{M} for NaF have been determined by several workers notably by Brindley (1930), Shonka (1933), Wasastjerna (1946) and Meisalo \& Merisalo (1966). Their values are respectively $398,442,440$ and $400^{\circ} \mathrm{K}$.

Experimental

The experimental procedure is fully described by Pathak \& Vasavada (1970; hereafter called Paper I). The profiles of lines 420 and 422 were recorded on a chart recorder and planimetered. The background was determined by a method described by Mitra \& Misra (1966).

The basic equation from which the X-ray Debye temperature Θ_{M} is calculated, (Pathak \& Trivedi, 1973; hereafter called Paper II), is

$$
\begin{align*}
R & =\frac{m K}{12 h^{2}} \frac{\lambda^{2}}{(1-\beta) \sin ^{2} \theta}\left[\ln \frac{I}{I_{0}}-\ln \frac{B^{\prime}}{B_{0}^{\prime}}\right] \\
& =\frac{T_{0} \psi_{0}}{\Theta_{M 0}^{2}}-\frac{T \psi}{\Theta_{M}^{2}} \frac{\sin ^{2} \theta}{\sin ^{2} \theta_{0}} \tag{1}
\end{align*}
$$

where I and I_{0} are the measured integrated intensities at temperatures T and T_{0}, and θ is the Bragg angle.
ψ and B^{\prime} are respectively given by

$$
\begin{aligned}
\psi & =\frac{1}{x} \int_{0}^{x} \frac{u \mathrm{~d} u}{e^{u}-1}+\frac{x}{4} \\
B^{\prime} & =N p f^{2} \frac{1+\cos ^{2} 2 \theta}{\sin ^{2} \theta \cos \theta}
\end{aligned}
$$

where $x=\Theta_{M} / T, N$ is the number of unit cells irradiated, p is the multiplicity factor and f is the atomic scattering factor.

The quantity $(1-\beta)$ takes into account the onephonon thermal diffuse scattering (TDS) contribution to the measured intensity according to Chipman \&

Paskin (1959). The quantity for f.c.c. crystal is given by

$$
\beta=\frac{1}{2}\left(\frac{\pi}{3}\right)^{1 / 3} \frac{a \cos \theta}{\lambda} \Delta,
$$

where a is the lattice constant and Δ is the length of the straight-line background expressed in radians.

It can be seen from equation (1) that the values of Θ_{M} at different temperatures can be found only if $\Theta_{M_{0}}$ at some reference temperature T_{0} (say room temperature) is known. In this investigation the value of $\Theta_{M_{0}}$ is computed by two methods, viz. (i) Paskin's method (ii) Chipman's method.

According to the Paskin's (1957) method, if the temperature variation of Θ_{M} is due to thermal expansion, the plot of $\ln \left(I / I_{0}\right)$ versus the reduced temperature $T^{\prime}\left[=T\left(a / a_{0}\right)^{6 \gamma}\right]$ should be a straight line and the value of $\Theta_{M_{0}}$ can be obtained from the slope of this line (Paper II).

In the second method Chipman (1960) used the fact that the Θ versus T curves as determined from the elastic constants are approximately linear. Hence if one plots a family of Θ-versus- T curves with a series of arbitrary values of Θ_{0}, one can assume that the curve with the smallest curvature is the right one.

Results and discussion

The plots of $\ln \left(I_{T} / I_{R}\right)$ ($I_{R}=$ intensity at room temperature) versus reduced temperature $T^{\prime}\left[T^{\prime}=T\left(a_{T} / a_{R}\right)^{6 \gamma}\right]$ for line 420 are given in Figs. 1 and 2. Debye Θ_{M} at different temperatures are presented in Figs. 3 and 4. The values of Θ_{M} in the plots are averages of those corresponding to the lines 420 and 422.

Since the plots of $\ln \left(I_{T} / I_{R}\right)$ versus reduced temperature T^{\prime} (Figs. 1, 2) are straight lines, it is evident that the anharmonic contribution to the Debye Θ in the range of temperatures examined comes essentially from thermal expansion.

It has been shown in Paper II that the plot of the reduced thermal expansion $\alpha / \alpha_{m / 2}$ versus $T / A a^{2} \Theta^{2}$, in the case of $\mathrm{KCl}, \mathrm{KBr}$ and RbCl , gives a common straight line whose equation is

Fig. 1. Temperature dependence of the quantity $\ln \left(I_{T} / I_{R}\right)$ for the 420 reflexion of $\mathrm{NaF} . \bigcirc \ln \left(I_{T} / I_{R}\right)$ versus absolute temperature, $\times \ln \left(I_{T} / I_{R}\right)$ versus reduced temperature.

$$
\begin{equation*}
\frac{\alpha}{\alpha_{m / 2}}=0.70+0.364 \times 10^{-11} \frac{T}{A a^{2} \Theta^{2}} \tag{2}
\end{equation*}
$$

Here $\alpha_{m / 2}$ is the thermal expansion at $T=\frac{1}{2} T_{m}, T_{m}$ being the melting temperature, A is the mean atomic weight and a the lattice constant. In Fig. 5 the full line shows the common curve of equation (2) while the points for NaF and RbBr are shown on it. It is seen that NaF and RbBr also follow the 'law of corresponding states'.

Fig. 2. Temperature dependence of the quantity $\ln \left(I_{T} / I_{R}\right)$ for the 420 reflexion of RbBr . $\bigcirc \ln \left(I_{T} / I_{R}\right)$ versus absolute temperature. $\times \ln \left(I_{T} / I_{R}\right)$ versus reduced temperature.

Fig. 3. The Debye Θ (average) versus temperature :- NaF. \times Paskin's method. Chipman's method.

Fig. 4. The Debye Θ (average) versus temperature :- RbBr . \times Paskin's method. \bigcirc Chipman's method.

Fig. 5. Common plot of reduced expansion $\alpha / \alpha_{m / 2}$ versus $T / A a^{2} \Theta^{2}$ for alkali halides (Paper II) with points for NaF and RbBr superimposed.

Table 1. $E_{f}(\mathrm{eV})$ values
From equations
(2),

Substance	(3), (4)	Experimental	Theoretical
LiF	$2 \cdot 50$	2.34-2.68 ${ }^{\text {a,b,c }}$	$2.574^{\text {d }}$
LiCl	1.89	$2 \cdot 12^{\text {d }}$	$1 \cdot 557^{\text {d }}$
LiBr	1.72	$1 \cdot 80^{\text {d }}$	$1.323^{\text {d }}$
LiI	$1 \cdot 47$	$1 \cdot 34{ }^{\text {d }}$	$1.004^{\text {d }}$
NaF	$3 \cdot 12$	-	$3 \cdot 23{ }^{\text {j }}$
NaCl	$2 \cdot 44$	2.4-2.5 ${ }^{\text {e }}$	$2 \cdot 36{ }^{j}$
NaBr	$2 \cdot 31$	$1 \cdot 72^{\text {f }}$	$2.33{ }^{\text {j }}$
NaI	2.00	-	$2 \cdot 00^{j}$
KF	2.73	-	$2.514^{\text {d }}$
KCl	2.36	$2 \cdot 30^{9}$	$2.259^{\text {d }}$
KBr	$2 \cdot 23$	$2.37{ }^{\text {h }}$	2.124 ${ }^{\text {d }}$
KI	2.20	$2 \cdot 21^{\text {t }}$	$2 \cdot 29^{j}, 1 \cdot 87^{k}$
RbF	$2 \cdot 81$	-	$2.257^{\text {d }}$
RbCl	2.21	-	$2 \cdot 198^{\text {d }}, 2 \cdot 17^{k}$
RbBr	2.09	-	$2 \cdot 112^{\text {d }}, 1 \cdot 99^{k}$
RbI	$1 \cdot 98$	-	$1 \cdot 965^{\text {d }}, 1 \cdot 88^{k}$

References
(a) Haven (1950)
(g) Jacobs \& Pantelis (1971)
(b) Barsis, Lilley \&
(h) Barr \& Dawson (1969)

Taylor (1967)
(c) Stoebe \& Praat (1967)
(i) Chandra \& Rolfe (1970)
(d) Boswarva \& Lidiard (1967)
(e) Allnatt, Pantelis \&
(j) Boswarva (1972)

Sime (1971)
(f) Hoshino \& Shimoji (1967)

For $0.30<T / T_{m}<0.65$ Pathak \& Vasavada in Paper I have obtained the equation

$$
\begin{equation*}
\frac{\alpha}{\alpha_{m / 2}}=0.65+0.70\left(\frac{T}{T_{m}}\right), \tag{3}
\end{equation*}
$$

which is applicable to all alkali halides. Similarly Pathak \& Trivedi (1969) have found the relation

$$
\begin{equation*}
\Theta_{M}=4183\left(E_{f} / M V^{2 / 3}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

connecting Θ_{M} and the energy of vacancy formation $E_{f}(\mathrm{in} \mathrm{eV}$) in the case of alkali halides. Here M is the molecular weight and V is the volume.
From equations (2), (3) and (4), the values of E_{f} are obtained for various alkali halides and are shown in Table 1. The values of E_{f} so obtained are compared with the experimental and theoretical values of other workers.

References

Allnatt, A. R., Pantelis, P. \& Sime, S.J. (1971). J. Phys. C, 4, 1778-1788.
Barr, L. W. \& Dawson, D. K. (1969). AERE Harwell Report, R 6234.
Barsis, E., Lilley, E. \& Taylor, A. (1967). Proc. Brit. Ceram. Soc. No. 9, 203-213.
Boswarwa, I. M. (1972). J. Phys. C. 5, L5-L8.
Boswarwa, I. M. \& Lidiard, A. B. (1967). Phil. Mag. 16, 805-826.
Brindley, G. W. (1930). Phil. Mag. 9, 193.
Chandra, S. \& Rolfe, J. (1970). Canad. J. Phys. 48, 397411.

Chipman, D. R. (1960). J. Appl. Phys. 31, 2012-2015.
Chipman, D. R. \& Paskin, A. (1959). J. Appl. Phys. 30, 1992-1997, 1998-2001.
Haven, V. (1950). Rec. Trav. Chim. Pays-Bas. 69, 12591274, 1471-1489.
Hoshino, H. \& Shimogi, M. (1967). J. Phys. Chem. Solids, 28, 1169-1175.
Jacobs, P. W. M. \& Pantelis, P. (1971). Phys. Rev. B4, 3757-3772.
Meisalo, V. \& Merisalo, M. (1966). Ann. Acad. Sci. Fenn. AVI, No. 211, 10 pp.
Mitra, G. B. \& Misra, N. K. (1966). Brit. J. Appl. Phys. 17, 1319-1328.
Paskin, A. (1957). Acta Cryst. 10, 667-669.
Pathák, P. D. \& Trivedi, J. M. (1969). Proc. Nucl. Phys. Solid State Phys. Symp. Roorkee, India, pp. 50-53.
Pathak, P. D. \& Trivedi, J. M. (1973). Acta Cryst. A29, 45-49.
Pathak, P. D. \& Vasavada, N. G. (1970). Acta Cryst. A26, 655-658.
Rao, K. J. \& Rao, C. N. R. (1968). Phys. Stat. Sol. 28, 157-169.
Shonka, J. J. (1933). Phys. Rev. 43, 947.
Stoebe, T. G. \& Praat, P. L. (1967). Proc. Brit. Ceram. Soc. No. 9, 181-192.
Wasastierna, J. A. (1946). Soc. Sci. Fenn-Commun. Phys. Maths. 13, 1.

